
11/12/2008

1

Interfaces

Lecture 10

Object-Oriented Programming

Lecture 10 Object-Oriented Programming 2

Agenda

• What do we have in our programming Toolbox?

• Design Problem

• Diamond Problem

• Interfaces

• Interface Naming

• Implementing Interfaces

• Interfaces and Inheritance

• Multiple Interfaces

• Interface Intricacies

• Interface vs. Abstract Class

• Abstraction

11/12/2008

2

Lecture 10 Object-Oriented Programming 3

What do we have in our

programming Toolbox

• Objects

• Classes

• Composition

• Arrays

• Iteration

• Recursion

• Inheritance

– Abstract Classes

Lecture 10 Object-Oriented Programming 4

Design Problem

Trains AutomobilesPlanes

JetHelicopter

Electric MonorailDiesel

Space shuttle Car Truck Motorcycle

Vehicle

Flying CarWhere are we going to fit a

11/12/2008

3

Lecture 10 Object-Oriented Programming 5

Solution 1 - Multiple Inheritance

Vehicle

AutomobilePlane

Flying Car

Lecture 10 Object-Oriented Programming 6

Diamond Problem

Vehicle

move()

Automobile

move()
Plane

move()

Flying Car

move()???

11/12/2008

4

Lecture 10 Object-Oriented Programming 7

Interfaces

Lecture 10 Object-Oriented Programming 8

Interfaces

• Much like two objects are related if they inherit from the
same superclass, objects can be related if they implement
the same interface

• Superclasses “factor out” responsibilities among similar
classes that model an “is-a” hierarchy

• Interfaces are mainly used to “factor out” responsibilities
among very different classes whose only commonality are
specific shared capabilities
– models the “acts-as” relationship

11/12/2008

5

Lecture 10 Object-Oriented Programming 9

Interfaces

• Interfaces only declare capabilities that object
– must have — there are no definitions

– no code! (except declarations)

• Interfaces are similar to abstract classes in that
– all methods are abstract, except that they have:

– no constructor

– usually no instance variables

– list of responsibilities (public methods) and

– nothing else

• Interfaces prescribe very generic roles
– professor, Head TAs and TAs all “teach” as part of

– their responsibility but they come from different class hierarchies and teach in
different ways

– another role they share is “UETIANs”

Lecture 10 Object-Oriented Programming 10

Interface Naming

• Interface names are often adjectives, ending in

• -able or -ive.

– examples: Colorable, Rotatable

• Interface names that specify roles often end in -er

– examples: Container, Mover, Teacher

• What might a Colorable interface look like?

11/12/2008

6

Lecture 10 Object-Oriented Programming 11

Code Example

package wheels; // Short for training wheels

/**

* This interface models something

* with a changeable color. It

* specifies that all classes

* implementing it must allow their

* color to be set and accessed.

*/

public interface Colorable {

// set the color of the implementing object

public void setColor(java.awt.Color c);

// get the color of the implementing object

public java.awt.Color getColor();

}

Lecture 10 Object-Oriented Programming 12

Code Example

• public interface Colorable {
– declaration for an interface

– same as for class, except “interface” instead of

– “class”

• public void setColor(java.awt.Color c);
– specifies that anything that acts as a Colorable must

– have the capability to have its color set

• public java.awt.Color getColor();
– specifies that anything that acts as a Colorable must

– have the capability to give access to its color

11/12/2008

7

Lecture 10 Object-Oriented Programming 13

Code Explanation

• Note the simplicity of methods
– Colorable interface only specifies accessor and

– mutator methods for Color

– methods can only be abstract, so that keyword

– can be left off

– methods can only be public, but we leave that

– keyword in for the sake of clarity

• That’s it!
– interfaces are really simple!

– in fact, this is almost verbatim the code in the actual wheels.Colorable interface

• Note that there is no executable code and hence
– no code sharing with interfaces - it is purely a “contractual” mechanism that puts all

– implementation responsibilities on the

– implementors

Lecture 10 Object-Oriented Programming 14

Implementing Interfaces

• Classes can extend only one other class

• Classes can implement any number of

interfaces

• Classes can extend a superclass and

implement interfaces

11/12/2008

8

Lecture 10 Object-Oriented Programming 15

Implementing Interfaces

• The Car, for example, could implement interfaces
which categorize objects that are able to move,
hold passengers, be driven, be repaired, etc.

• Interfaces thus create the fourth mechanism for
factoring that is even more general and flexible
than others:
– classes and instances

– methods and parameters

– superclasses and subclasses

– interfaces and implementations

Lecture 10 Object-Oriented Programming 16

Implementing Interfaces Code

Example
package Demos.Car;

/**

* This class models a CS15Mobile

* that implements the Colorable

* interface.

*/

public class OOPCar extends Car implements Colorable {

private java.awt.Color _color;

// other instance variables

// constructor

public void setColor(java.awt.Color c) {

_color = c;

}

public java.awt.Color getColor() {

return _color;

}

// other methods

}

11/12/2008

9

Lecture 10 Object-Oriented Programming 17

Code Explained

• public class OOPCar extends Car implements
Colorable {

– OOPCar extends Car but also implements Colorable

– implementing an interface is as simple as using the word implements

– to implement multiple interfaces, just separate them by a comma
• e.g., implements Colorable, Locatable, Mover

• OOPCar defines the Colorable interface methods by making them
simple accessors and mutators
– could also do something more complicated

– Java doesn’t care how you define the methods of an interface, just that you
do define them

Lecture 10 Object-Oriented Programming 18

Code Explained

• What happens if you don’t define a method

of an interface you implement?

– you get a compiler error – the same thing that

happens if you don’t define an abstract method

of a superclass

– class must be declared abstract

11/12/2008

10

Lecture 10 Object-Oriented Programming 19

Interfaces and Inheritance

• Like classes, interfaces can extend other interfaces

• Unlike classes, interfaces can extend any number

of other interfaces

– this is because interfaces merely declare policy — they

never specify any implementation

– just put a comma between interface names after

extends

Lecture 10 Object-Oriented Programming 20

Multiple Interfaces

• Extending multiple interfaces is useful for objects that have some
things in common but otherwise behave very differently
– example: GUI components (e.g., PushButton, TextBox, Menu)

– they all behave and react very differently

– but they all have the capability to be located on the screen and sized

– so a Component interface is created that extends both Locatable and
Sizeable

• Remember: objects inherit all capabilities from their superclasses, so
an object inherits all interfaces from its superclass
– therefore if a superclass implements an interface, the subclass implements

it too!

11/12/2008

11

Lecture 10 Object-Oriented Programming 21

Code Example

Implementing multiple interfaces is easy
Just implement the union of all their methods!

public interface Mover {

public void move();

}

public interface Shaker {

public void shake();

}

public class Politician implements Mover, Shaker {

//constructor

public void move() {

//code to move

}

public void shake() {

//code to shake

}

}

Lecture 10 Object-Oriented Programming 22

Interface Intricacies

• What if we have a method declared in two different
interfaces with the same exact signature?
– this should happen only if you really mean them to specify the

same behavior

– thus we only need to define the method once

• What if we have methods with the same name but with
different signatures (e.g., parameter lists) declared in
different interfaces?
– this should happen if different behaviors were meant, and the

coincidence of the names being identical was either accidental or
meant to suggest similarity in behaviors

– either way, we must define each method appropriately

11/12/2008

12

Lecture 10 Object-Oriented Programming 23

Interface Intricacies

• What if these methods have the same name and the same
signature but I want them to mean different things?
– bummer!

– you should rename one of those methods to avoid the semantic
conflict

• What if we have methods with the same signature, but
different return types? (Recall: return types are not part of
the signature.)
– ERROR!

– have to either not implement one of the interfaces, or change the
signatures of the methods in the interfaces.

Lecture 10 Object-Oriented Programming 24

Interface vs. Abstract Class

An interface is simply a list of unimplemented, and therefore

abstract, methods. So how does an interface differ from an

abstract class? The differences are significant.

• An interface cannot implement any methods, whereas an abstract

class can.

• A class can implement many interfaces but can have only one

superclass.

• An interface is not part of the class hierarchy. Unrelated classes

can implement the same interface.

11/12/2008

13

Lecture 10 Object-Oriented Programming 25

Integer

BigDecimal

Float

<<abstract>>

Number

isa

Byte

methods: methods:
byteValue(), byteValue(),
floatValue(), floatValue(),

Lecture 10 Object-Oriented Programming 26

Circle

Date

String

<<interface>>

Comparable

implements

Die

implements

implements

method: method:
compareTo() compareTo()

11/12/2008

14

Lecture 10 Object-Oriented Programming 27

• Use an abstract class when you want a template for a

collection of subclasses

• Subclass when you want to extend a class and add some

functionality, whether or not the parent class is abstract

• Subclass when you must (e.g. Applets)

• Define an interface when there is no common parent class

with the desired functionality, and when you want only

certain unrelated classes to have that functionality

• Use interfaces as “markers” to indicate something about a

class (e.g. Cloneable – can make a copy)

Lecture 10 Object-Oriented Programming 28

Design Problem

Trains AutomobilesPlanes

JetHelicopter

Electric MonorailDiesel

Space shuttle Car Truck Motorcycle

Vehicle

Flying CarWhere are we going to fit a

11/12/2008

15

Lecture 10 Object-Oriented Programming 29

Abstraction

• Separation of specification
from implementation in a

class definition

• Interface

• Implementation

• Interface describe things a

programmer needs to know to

use the class.

• Implementation defines the

details of how the methods are

done

Lecture 10 Object-Oriented Programming 30

Readings

• Book Name: Head First JAVA

Author Name: Kathy Sierra & Bert Bates

Content: Chapter # 7 & 8

