Interfaces

Lecture 10
Object-Oriented Programming

Agenda

What do we have in our programming Toolbox?
Design Problem

Diamond Problem
Interfaces

Interface Naming
Implementing Interfaces
Interfaces and Inheritance
Multiple Interfaces
Interface Intricacies
Interface vs. Abstract Class
Abstraction

Lecture 10 Object-Oriented Programming

11/12/2008

11/12/2008

What do we have in our
programming Toolbox

* Objects
* Classes
e Composition
e Arrays
* [teration
* Recursion
 Inheritance
— Abstract Classes

Lecture 10 Object-Oriented Programming 3

Design Problem
Vehicle
[]
Planes Trains Automobiles
‘ | = F =T
Helicopter Jet Space shuttle| Car Truck Motorcycle
[]
Diesel Electric Monorail
Where are we going to fit a Flying Car
Lecture 10 Object-Oriented Programming 4

Solution 1 - Multiple Inheritance

Vehicle
+
! }
Plane Automobile
Y
Flying Car
Lecture 10 Object-Oriented Programming

Diamond Problem

Vehicle
move()

+
| |
Plane Automobile

move() move()

hd
Flying Car
move()??7?

Lecture 10 Object-Oriented Programming

11/12/2008

Interfaces

Lecture 10 Object-Oriented Programming 7

Interfaces

* Much like two objects are related if they inherit from the
same superclass, objects can be related if they implement
the same interface

* Superclasses “factor out” responsibilities among similar
classes that model an “is-a” hierarchy

* Interfaces are mainly used to “factor out” responsibilities
among very different classes whose only commonality are
specific shared capabilities

— models the “acts-as” relationship

Lecture 10 Object-Oriented Programming 8

11/12/2008

Interfaces

Interfaces only declare capabilities that object
— must have — there are no definitions
— no code! (except declarations)

Interfaces are similar to abstract classes in that
— all methods are abstract, except that they have:
— no constructor
— usually no instance variables
— list of responsibilities (public methods) and
- nothing else

Interfaces prescribe very generic roles
— professor, Head TAs and TAs all “teach” as part of

— their responsibility but they come from different class hierarchies and teach in
different ways

— another role they share is “UETIANs”

Lecture 10 Object-Oriented Programming

* Interface names that specify roles often end in -er

Interface Naming

Interface names are often adjectives, ending in

-able or -ive.
— examples: Colorable, Rotatable

— examples: Container, Mover, Teacher

What might a Colorable interface look like?

Lecture 10 Object-Oriented Programming

11/12/2008

Code Example

package wheels; // Short for training wheels

/

* % Ok %k F % F

*

This interface models something
with a changeable color. It
specifies that all classes
implementing it must allow their
color to be set and accessed.

public interface Colorable {

// set the color of the implementing object
public void setColor(java.awt.Color c);

// get the color of the implementing object
public java.awt.Color getColor();

Lecture 10 Object-Oriented Programming

11

Code Example

public interface Colorable {
— declaration for an interface
— same as for class, except “interface” instead of
- “class”

public void setColor(java.awt.Color c);
— specifies that anything that acts as a Colorable must
— have the capability to have its color set

public java.awt.Color getColor();
— specifies that anything that acts as a Colorable must
— have the capability to give access to its color

Lecture 10 Object-Oriented Programming

11/12/2008

Code Explanation

* Note the simplicity of methods
— Colorable interface only specifies accessor and
- mutator methods for Color
— methods can only be abstract, so that keyword
- can be left off
— methods can only be public, but we leave that
- keyword in for the sake of clarity

e That’sit!
— interfaces are really simple!
— in fact, this is almost verbatim the code in the actual wheels.Colorable interface

* Note that there is no executable code and hence
— no code sharing with interfaces - it is purely a “contractual” mechanism that puts all
— implementation responsibilities on the
— implementors

Lecture 10 Object-Oriented Programming 13

Implementing Interfaces

» (Classes can extend only one other class

* (Classes can implement any number of
interfaces

* (Classes can extend a superclass and
implement interfaces

Lecture 10 Object-Oriented Programming 14

11/12/2008

Implementing Interfaces

* The Car, for example, could implement interfaces
which categorize objects that are able to move,
hold passengers, be driven, be repaired, etc.

* Interfaces thus create the fourth mechanism for
factoring that is even more general and flexible
than others:

— classes and instances

— methods and parameters

— superclasses and subclasses

— interfaces and implementations

Lecture 10 Object-Oriented Programming 15

Implementing Interfaces Code
Example

package Demos.Car;

/**

* This class models a CS1l5Mobile
* that implements the Colorable
* interface.

*/
public class OOPCar extends Car implements Colorable {

private java.awt.Color _color;

// other instance variables

// constructor

public void setColor(java.awt.Color c) {
_color = c;

}

public java.awt.Color getColor() {
return _color;

}

// other methods

}
Lecture 10 Object-Oriented Programming 16

11/12/2008

Code Explained

public class OOPCar extends Car implements
Colorable {

— OOPCar extends Car but also implements Colorable
— implementing an interface is as simple as using the word implements

— to implement multiple interfaces, just separate them by a comma
¢ e.g.,implements Colorable, Locatable, Mover

* OOPCar defines the Colorable interface methods by making them
simple accessors and mutators
— could also do something more complicated

— Java doesn’t care how you define the methods of an interface, just that you
do define them

Lecture 10 Object-Oriented Programming 17

Code Explained

* What happens if you don’t define a method
of an interface you implement?

— you get a compiler error — the same thing that
happens if you don’t define an abstract method
of a superclass

— class must be declared abstract

Lecture 10 Object-Oriented Programming 18

11/12/2008

Interfaces and Inheritance

* Like classes, interfaces can extend other interfaces

» Unlike classes, interfaces can extend any number
of other interfaces

— this is because interfaces merely declare policy — they
never specify any implementation

— just put a comma between interface names after
extends

Lecture 10 Object-Oriented Programming 19

Multiple Interfaces

* Extending multiple interfaces is useful for objects that have some
things in common but otherwise behave very differently
— example: GUI components (e.g., PushButton, TextBox, Menu)
— they all behave and react very differently
— but they all have the capability to be located on the screen and sized

— so a Component interface is created that extends both Locatable and
Sizeable

* Remember: objects inherit all capabilities from their superclasses, so
an object inherits all interfaces from its superclass

— therefore if a superclass implements an interface, the subclass implements
it too!

Lecture 10 Object-Oriented Programming 20

11/12/2008

10

Code Example

Implementing multiple interfaces is easy
Just implement the union of all their methods!

public interface Mover {
public void move();

}

public interface Shaker {
public void shake();
}

public class Politician implements Mover, Shaker {

//constructor

public void move () {
//code to move

}

public void shake() {
//code to shake
}
}

Lecture 10 Object-Oriented Programming

21

Interface Intricacies

¢ What if we have a method declared in two different

interfaces with the same exact signature?

— this should happen only if you really mean them to specify the

same behavior
— thus we only need to define the method once

* What if we have methods with the same name but with
different signatures (e.g., parameter lists) declared in

different interfaces?

— this should happen if different behaviors were meant, and the
coincidence of the names being identical was either accidental or

meant to suggest similarity in behaviors

— either way, we must define each method appropriately

Lecture 10 Object-Oriented Programming

22

11/12/2008

11

Interface Intricacies

¢ What if these methods have the same name and the same
signature but I want them to mean different things?
— bummer!

— you should rename one of those methods to avoid the semantic
conflict

* What if we have methods with the same signature, but
different return types? (Recall: return types are not part of
the signature.)

— ERROR!

— have to either not implement one of the interfaces, or change the
signatures of the methods in the interfaces.

Lecture 10 Object-Oriented Programming 23

Interface vs. Abstract Class

An interface is simply a list of unimplemented, and therefore
abstract, methods. So how does an interface differ from an
abstract class? The differences are significant.

* An interface cannot implement any methods, whereas an abstract
class can.

* A class can implement many interfaces but can have only one
superclass.

* An interface is not part of the class hierarchy. Unrelated classes
can implement the same interface.

Lecture 10 Object-Oriented Programming 24

11/12/2008

12

BigDecimal

methods:

byteValue(),
floatValue(),
4

isa

Lecture 10 Object-Oriented Programming 25
method:
compareTo()
44 6%
. o : . *», implements
implements . : X ‘.,
o* : “ ‘e
’0’ : -
L]
.
Circle

Lecture 10

Object-Oriented Programming

: String
» implements

*
.

13

11/12/2008

Use an abstract class when you want a template for a
collection of subclasses

Subclass when you want to extend a class and add some
functionality, whether or not the parent class is abstract

Subclass when you must (e.g. Applets)

Define an interface when there is no common parent class
with the desired functionality, and when you want only
certain unrelated classes to have that functionality

Use interfaces as “markers” to indicate something about a
class (e.g. Cloneable — can make a copy)

Lecture 10

Object-Oriented Programming 27

Design Problem

Vehicle

[1

Planes Trains Automobiles

: IA 0 f—]—‘

Helicopter

Jet Space shuttle| Car Truck Motorcycle

Lecture 10

Diesel Electric Monorail

Where are we going to fit a Flying Car

Object-Oriented Programming 28

11/12/2008

14

Abstraction

» Separation of specification
from implementation in a
class definition

/

* Interface

* Implementation

Interface

Signatures of public methods
Public named constants

* Interface describe things a
programmer needs to know to

7

use the class.

* Implementation defines the
details of how the methods are

Implementation

Private data fields
Private constants
Private methods
Protected methods
Public methods

done

Lecture 10 Object-Oriented Programming

29

Readings

Book Name: Head First JAVA

Author Name: Kathy Sierra & Bert Bates

Content: Chapter # 7 & 8

Lecture 10 Object-Oriented Programming

30

11/12/2008

15

